Advertisements
Advertisements
Question
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Solution
L.H.S = `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2`
= `(1 + sin^2theta + cos^2theta + 2sintheta - 2sintheta cos theta - 2costheta)/(1 + sin^2theta + cos^2theta + 2sintheta + 2sintheta costheta + 2costheta)`
= `(1 + 1 + 2sintheta (1 - cos theta) - 2cos theta)/(1 + 1 + 2sin theta + 2cos theta (sin theta + 1))`
= `(2(1 - cos theta) + 2sintheta (1 - cos theta))/(2(1 + sin theta) + 2cos theta(1 + sin theta))`
= `(2(1 - costheta)(1 + sintheta))/(2(1 + sintheta)(1 + costheta))`
= `((1 - cos theta))/((1 + cos theta))`
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.