Advertisements
Advertisements
Question
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Solution
LHS = sec2 (90° - θ) + tan2 (90° - θ)
= cosec2θ + cot2θ
= 1 + cot2θ + cot2θ
= 1 + 2cot2θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Find the value of sin 30° + cos 60°.
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`