Advertisements
Advertisements
Question
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Solution
sinθcotθ + sinθcosecθ = 1 + cosθ
LHS = `sinθcosθ/sinθ + sinθ1/sinθ`
= cosθ + 1 = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`