Advertisements
Advertisements
Question
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Solution
We have,
x = r sin θ cos Φ,
y = r sin θ sin Φ,
z = r cos θ
Squaring and adding,
x2 + y2 + z2
= r2 sin2θ cos2Φ + r2 sin2θ sin2Φ + r2 cos2θ
= r2 sin2θ (cos2Φ + sin2Φ) + r2 cos2θ
= r2 sin2θ x (1) + r2 cos2θ
= r2 (sin2θ + cos2θ)
= r2 x 1 = r2
Hence, x2 + y2 + z2 = r2.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Choose the correct alternative:
cos 45° = ?
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.