Advertisements
Advertisements
प्रश्न
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
उत्तर
We have,
x = r sin θ cos Φ,
y = r sin θ sin Φ,
z = r cos θ
Squaring and adding,
x2 + y2 + z2
= r2 sin2θ cos2Φ + r2 sin2θ sin2Φ + r2 cos2θ
= r2 sin2θ (cos2Φ + sin2Φ) + r2 cos2θ
= r2 sin2θ x (1) + r2 cos2θ
= r2 (sin2θ + cos2θ)
= r2 x 1 = r2
Hence, x2 + y2 + z2 = r2.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If `sin theta = x , " write the value of cot "theta .`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2