Advertisements
Advertisements
प्रश्न
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
उत्तर
L.H.S. = `cos θ/(1 - sin θ)`
= `(cos θ(1 + sin θ))/((1 - sin θ)(1 + sin θ))`
= `(cos θ(1 + sin θ))/(1 - sin^2θ)`
= `(cos θ(1 + sin θ))/(cos^2 θ)`
= `( 1 + sin θ)/cos θ`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ