Advertisements
Advertisements
प्रश्न
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
उत्तर
LHS= `(sectheta- tan theta)/(sec theta + tan theta)`
= `(1/cos theta-sin theta/cos theta)/(1/cos theta+ sin theta/cos theta)`
=`((1-sin theta)/cos theta)/((1+ sin theta)/cos theta)`
=`(1-sin theta)/(1+ sin theta)`
=`((1-sin theta) (1+ sin theta))/( (1+ sin theta )(1+ sin theta)) {"Dividing the numerator and
denominator by"(1 + cos theta)}`
=`((1-sin^2 theta))/((1+ sin theta)^2)`
=`cos^2 theta/(1+ sin theta)^2`
= RHS
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0