Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
उत्तर
L.H.S. = `(1 - sinA)/(1 + sinA)`
= `(1 - sinA)/(1 + sinA) xx (1 - sinA)/(1 - sinA)`
= `(1 - sinA)^2/(1 - sin^2A`
= `(1 - sinA)^2/cos^2A`
= `((1 - sinA)/cosA)^2`
= `(1/cosA - sinA/cosA)^2`
= `(secA - tanA)^2`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`