Advertisements
Advertisements
प्रश्न
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
उत्तर
(1 + tan A + sec A) (1 + cot A – cosec A)
= 1 + cot A – cosec A + tan A + 1 – sec A + sec A + cosec A – cosec A sec A
= `2 + cosA/sinA + sinA/cosA - 1/(sinAcosA)`
= `2 + (cos^2A + sin^2A)/(sinAcosA) - 1/(sinAcosA)`
= `2 + 1/(sinAcosA) - 1/(sinAcosA)`
= 2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`