Advertisements
Advertisements
प्रश्न
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
उत्तर
Given ,`(2 sin theta + 3 cos theta ) = 2 .....(i)`
We have `( 2 sintheta + 3 cos theta )^2 + ( 3 sin theta - 2 cos theta )^2`
=` 4 sin^2 theta + 9 cos^2 theta + 12 sin theta cos theta + 9 sin^2 theta + 4 cos^2 theta - 12 sin theta cos theta`
=`4 ( sin^2 theta + cos^2 theta ) + 9 ( sin^2 theta + cos^2 theta )`
=`4+9`
=13
i.e .,`( 2 sin theta + 3 cos theta ) ^2 + ( 3 sin theta - 2cos theta )^2 = 13`
= > `2^2 + (3 sintheta - 2 cos theta )^2 = 13`
= > `( 3 sin theta - 2 cos theta ) ^2 = 13-4`
= > `( 3 sin theta - 2 cos theta ) ^2 = 9 `
= > `( 3 sin theta - 2 cos theta ) = +- 3`
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If 3 sin θ = 4 cos θ, then sec θ = ?
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.