Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
उत्तर
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
⇒ `sin^4A + cos^4A + 2sin^2Acos^2A = 1`
LHS = `(sin^2A + cos^2A)^2`
= 1 = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
tan θ cosec2 θ – tan θ is equal to
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`