Advertisements
Advertisements
प्रश्न
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
उत्तर
LHS = `1/(sec θ - tan θ)`
= `1/((1/cos θ) - (sin θ/cos θ))`
= `(cos θ xx (1 + sin θ))/((1 - sin θ) xx ( 1 + sin θ))`
= `(cos θ( 1 + sin θ))/(1 - sin^2 θ)`
= `(cos θ( 1 + sin θ))/(cos^2 θ)`
= `1/cos θ + sin θ/cos θ`
= sec θ + tan θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
tan (55° + x) = cot (35° – x)
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α