हिंदी

Prove that cot2θ – tan2θ = cosec2θ – sec2θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that cot2θ – tan2θ = cosec2θ – sec2θ 

योग

उत्तर

L.H.S = cot2θ – tan2θ

= (cosec2θ − 1) − (sec2θ − 1)    ......`[(because tan^2theta = sec^2theta - 1),(cot^2theta = "cosec"^2 theta - 1)]`

= cosec2θ − 1 − sec2θ + 1

= cosec2θ − sec2θ

= R.H.S

∴ cot2θ – tan2θ = cosec2θ – sec2θ 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


If sec θ = `25/7`, then find the value of tan θ.


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×