Advertisements
Advertisements
प्रश्न
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
उत्तर
L.H.S = cot2θ – tan2θ
= (cosec2θ − 1) − (sec2θ − 1) ......`[(because tan^2theta = sec^2theta - 1),(cot^2theta = "cosec"^2 theta - 1)]`
= cosec2θ − 1 − sec2θ + 1
= cosec2θ − sec2θ
= R.H.S
∴ cot2θ – tan2θ = cosec2θ – sec2θ
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
If sec θ = `25/7`, then find the value of tan θ.
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`