Advertisements
Advertisements
Question
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Solution
L.H.S = cot2θ – tan2θ
= (cosec2θ − 1) − (sec2θ − 1) ......`[(because tan^2theta = sec^2theta - 1),(cot^2theta = "cosec"^2 theta - 1)]`
= cosec2θ − 1 − sec2θ + 1
= cosec2θ − sec2θ
= R.H.S
∴ cot2θ – tan2θ = cosec2θ – sec2θ
APPEARS IN
RELATED QUESTIONS
`(1+tan^2A)/(1+cot^2A)` = ______.
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
` tan^2 theta - 1/( cos^2 theta )=-1`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
What is the value of 9cot2 θ − 9cosec2 θ?
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?