Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Solution
We have to prove `1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
We know that, `sin^2 A + cos^2 A = 1`
So,
`1/(1 + sin A) + 1/(1 - sin A) =((1 - sin A) + (1 + sin A))/((1 + sin A)(1 - sin A))`
`= (1 - sin A + 1+ sin A)/(1 - sin^2 A)`
`= 2/cos^2 A`
`= 2 sec^2 A`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of (1 + cot2 θ) sin2 θ?
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Eliminate θ if x = r cosθ and y = r sinθ.
(1 – cos2 A) is equal to ______.