Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
उत्तर
We have to prove `1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
We know that, `sin^2 A + cos^2 A = 1`
So,
`1/(1 + sin A) + 1/(1 - sin A) =((1 - sin A) + (1 + sin A))/((1 + sin A)(1 - sin A))`
`= (1 - sin A + 1+ sin A)/(1 - sin^2 A)`
`= 2/cos^2 A`
`= 2 sec^2 A`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?