Advertisements
Advertisements
प्रश्न
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
उत्तर
L.H.S = `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2`
= `(1 + sin^2theta + cos^2theta + 2sintheta - 2sintheta cos theta - 2costheta)/(1 + sin^2theta + cos^2theta + 2sintheta + 2sintheta costheta + 2costheta)`
= `(1 + 1 + 2sintheta (1 - cos theta) - 2cos theta)/(1 + 1 + 2sin theta + 2cos theta (sin theta + 1))`
= `(2(1 - cos theta) + 2sintheta (1 - cos theta))/(2(1 + sin theta) + 2cos theta(1 + sin theta))`
= `(2(1 - costheta)(1 + sintheta))/(2(1 + sintheta)(1 + costheta))`
= `((1 - cos theta))/((1 + cos theta))`
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.