Advertisements
Advertisements
प्रश्न
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
उत्तर
Given x sin2 θ + y cos2 θ = sin θ cos θ
x sin θ = y cos θ ...(1)
x sin3 θ + y cos3 θ = sin θ cos θ
x sin θ (sin2 θ) + y cos θ (cos2 θ) = sin θ cos θ
x sin θ (sin2 θ) + x sin θ (cos2 θ) = sin θ cos θ
x sin θ (sin2 θ + cos2 θ) = sin θ cos θ
x sin θ = sin θ cos θ
x = cos θ
substitute x = cos θ in (1)
cos θ sin θ = y cos θ y = sin θ
L.H.S = x2 + y2 = cos2 θ + sin2 θ = 1
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α