Advertisements
Advertisements
प्रश्न
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
उत्तर
𝑊𝑒 ℎ𝑎𝑣𝑒,
Sin 𝜃 = cos(𝜃 − 45°)
⟹ cos(90° − 𝜃) = cos(𝜃 − 45°)
Comparing both sides, we get
` 90° - theta = theta - 45°`
` ⇒ theta + theta = 90° + a=45°`
`⇒ 2 theta = 135°`
`⇒ theta = ((135)/2)^°`
∴ 𝜃 = 67.5°
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If cosθ = `5/13`, then find sinθ.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
(1 – cos2 A) is equal to ______.