Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
рдЙрддреНрддрд░
W e have ,
3 `cot theta = 4 `
⇒ ` cot theta = 4/3 `
Now,
`((2 cos theta + sin theta ))/((4 cos theta - sin theta))`
=` (((2 cos theta )/ sin theta + sin theta / sin theta))/(((4 cos theta) / sin theta - sin theta/ sin theta))` (ЁЭР╖ЁЭСЦЁЭСгЁЭСЦЁЭССЁЭСЦЁЭСЫЁЭСФ ЁЭСЫЁЭСвЁЭСЪЁЭСТЁЭСЯЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСОЁЭСЫЁЭСС ЁЭССЁЭСТЁЭСЫЁЭСЬЁЭСЪЁЭСЦЁЭСЫЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСПЁЭСж sin ЁЭЬГ)
=`((2 cot theta +1))/((4 cot theta -1))`
=`((2xx4/3 +1))/((4xx4/3-1))`
=`((8/3+1/1))/((16/3-1/1))`
=`(((8+3)/3))/(((16-3)/3))`
=`((11/3))/((13/3))`
=`11/13`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If `sec theta = x ,"write the value of tan" theta`.
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1