рд╣рд┐рдВрджреА

If 3 `Cot Theta = 4 , "Write the Value Of" ((2 Cos Theta - Sin Theta))/(( 4 Cos Theta - Sin Theta))` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`

рдЙрддреНрддрд░

W e have , 

 3 `cot theta = 4 `

 ⇒ ` cot theta = 4/3 `

 Now, 

       `((2 cos theta + sin theta ))/((4 cos theta - sin theta))`

      =` (((2 cos theta )/ sin theta + sin theta / sin theta))/(((4 cos theta) / sin theta - sin theta/ sin theta))`          (ЁЭР╖ЁЭСЦЁЭСгЁЭСЦЁЭССЁЭСЦЁЭСЫЁЭСФ ЁЭСЫЁЭСвЁЭСЪЁЭСТЁЭСЯЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСОЁЭСЫЁЭСС ЁЭССЁЭСТЁЭСЫЁЭСЬЁЭСЪЁЭСЦЁЭСЫЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСПЁЭСж sin ЁЭЬГ)

      =`((2 cot theta +1))/((4 cot theta -1))`

       =`((2xx4/3 +1))/((4xx4/3-1))`

       =`((8/3+1/1))/((16/3-1/1))`

       =`(((8+3)/3))/(((16-3)/3))`

       =`((11/3))/((13/3))`

       =`11/13`

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 3

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 3 | Q 21

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


If `sec theta = x ,"write the value of tan"  theta`.


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×