Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
рдЙрддреНрддрд░
W e have ,
3 `cot theta = 4 `
⇒ ` cot theta = 4/3 `
Now,
`((2 cos theta + sin theta ))/((4 cos theta - sin theta))`
=` (((2 cos theta )/ sin theta + sin theta / sin theta))/(((4 cos theta) / sin theta - sin theta/ sin theta))` (ЁЭР╖ЁЭСЦЁЭСгЁЭСЦЁЭССЁЭСЦЁЭСЫЁЭСФ ЁЭСЫЁЭСвЁЭСЪЁЭСТЁЭСЯЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСОЁЭСЫЁЭСС ЁЭССЁЭСТЁЭСЫЁЭСЬЁЭСЪЁЭСЦЁЭСЫЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСПЁЭСж sin ЁЭЬГ)
=`((2 cot theta +1))/((4 cot theta -1))`
=`((2xx4/3 +1))/((4xx4/3-1))`
=`((8/3+1/1))/((16/3-1/1))`
=`(((8+3)/3))/(((16-3)/3))`
=`((11/3))/((13/3))`
=`11/13`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Choose the correct alternative:
cos θ. sec θ = ?
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.