рдорд░рд╛рдареА

If 3 `Cot Theta = 4 , "Write the Value Of" ((2 Cos Theta - Sin Theta))/(( 4 Cos Theta - Sin Theta))` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`

рдЙрддреНрддрд░

W e have , 

 3 `cot theta = 4 `

 ⇒ ` cot theta = 4/3 `

 Now, 

       `((2 cos theta + sin theta ))/((4 cos theta - sin theta))`

      =` (((2 cos theta )/ sin theta + sin theta / sin theta))/(((4 cos theta) / sin theta - sin theta/ sin theta))`          (ЁЭР╖ЁЭСЦЁЭСгЁЭСЦЁЭССЁЭСЦЁЭСЫЁЭСФ ЁЭСЫЁЭСвЁЭСЪЁЭСТЁЭСЯЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСОЁЭСЫЁЭСС ЁЭССЁЭСТЁЭСЫЁЭСЬЁЭСЪЁЭСЦЁЭСЫЁЭСОЁЭСбЁЭСЬЁЭСЯ ЁЭСПЁЭСж sin ЁЭЬГ)

      =`((2 cot theta +1))/((4 cot theta -1))`

       =`((2xx4/3 +1))/((4xx4/3-1))`

       =`((8/3+1/1))/((16/3-1/1))`

       =`(((8+3)/3))/(((16-3)/3))`

       =`((11/3))/((13/3))`

       =`11/13`

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 3

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


cos4 A − sin4 A is equal to ______.


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Choose the correct alternative:

cos θ. sec θ = ?


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×