Advertisements
Advertisements
प्रश्न
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
उत्तर
LHS = cos θ sin (90° - θ) + sin θ cos (90° - θ)
= cos θ. cos θ + sin θ. sin θ
= cos2θ + sin 2θ
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Write the value of tan10° tan 20° tan 70° tan 80° .
tan θ cosec2 θ – tan θ is equal to
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.