Advertisements
Advertisements
प्रश्न
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
उत्तर
LHS = `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) `
= `cos θ/cos θ + sin θ/sin θ`
= 1 + 1 = 2
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.