मराठी

If `( Tan Theta + Sin Theta ) = M and ( Tan Theta - Sin Theta ) = N " Prove that "(M^2-n^2)^2 = 16 Mn .` - Mathematics

Advertisements
Advertisements

प्रश्न

If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`

उत्तर

We have `(tan theta + sin theta ) = m and ( tan theta - sin theta )=n`

 Now ,LHS = `(m^2-n^2)^2`

                 =`[(tan^2 theta + sin theta )^2 - "( tan theta - sin theta )^2]^2`

                =`[(tan^2 theta + sin^2 theta + 2 tan  theta  sin theta )-( tan^2 theta + sin^2 theta -2 tan theta sin theta )]^2`

               =`[(tan^2 theta +sin^2 theta + 2 tan theta sin theta - tan^2 theta -  sin^2 theta+ 2 tan theta sin theta )]^2`

              =`(4 tan theta sin theta )^2`

              =`16 tan^2 theta sin^2 theta`

              =`16 (sin ^2 theta )/(cos^2 theta ) sin^2 theta`

              =`16 ((1- cos^2 theta) sin ^2 theta)/ cos^2 theta`

               =` 16 [ tan^2 theta (1- cos^2 theta)]`

               =`16 (tan^2 theta - tan^2 theta cos^2 theta)`

               =`16 (tan^2 theta -(sin^2 theta)/(cos^2 theta) xx cos^2 theta )s`

              =`16 ( tan^2 theta - sin^2 theta )`

              =`16 (tan theta + sin theta ) ( tan theta - sin theta)`

              =`16 mn                 [(tan theta + sin^theta )( tan theta - sin theta ) =mn]`

               =`∴ (m^2 - n^2 )(m^2 - n^2 )^2 = 16 mn`

           

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 2

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 2 | Q 7

संबंधित प्रश्‍न

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that cot2θ × sec2θ = cot2θ + 1


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×