Advertisements
Advertisements
Question
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
Solution
We have `(tan theta + sin theta ) = m and ( tan theta - sin theta )=n`
Now ,LHS = `(m^2-n^2)^2`
=`[(tan^2 theta + sin theta )^2 - "( tan theta - sin theta )^2]^2`
=`[(tan^2 theta + sin^2 theta + 2 tan theta sin theta )-( tan^2 theta + sin^2 theta -2 tan theta sin theta )]^2`
=`[(tan^2 theta +sin^2 theta + 2 tan theta sin theta - tan^2 theta - sin^2 theta+ 2 tan theta sin theta )]^2`
=`(4 tan theta sin theta )^2`
=`16 tan^2 theta sin^2 theta`
=`16 (sin ^2 theta )/(cos^2 theta ) sin^2 theta`
=`16 ((1- cos^2 theta) sin ^2 theta)/ cos^2 theta`
=` 16 [ tan^2 theta (1- cos^2 theta)]`
=`16 (tan^2 theta - tan^2 theta cos^2 theta)`
=`16 (tan^2 theta -(sin^2 theta)/(cos^2 theta) xx cos^2 theta )s`
=`16 ( tan^2 theta - sin^2 theta )`
=`16 (tan theta + sin theta ) ( tan theta - sin theta)`
=`16 mn [(tan theta + sin^theta )( tan theta - sin theta ) =mn]`
=`∴ (m^2 - n^2 )(m^2 - n^2 )^2 = 16 mn`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Simplify : 2 sin30 + 3 tan45.
What is the value of (1 − cos2 θ) cosec2 θ?
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Choose the correct alternative:
1 + tan2 θ = ?
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?