English

If `( Tan Theta + Sin Theta ) = M and ( Tan Theta - Sin Theta ) = N " Prove that "(M^2-n^2)^2 = 16 Mn .` - Mathematics

Advertisements
Advertisements

Question

If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`

Solution

We have `(tan theta + sin theta ) = m and ( tan theta - sin theta )=n`

 Now ,LHS = `(m^2-n^2)^2`

                 =`[(tan^2 theta + sin theta )^2 - "( tan theta - sin theta )^2]^2`

                =`[(tan^2 theta + sin^2 theta + 2 tan  theta  sin theta )-( tan^2 theta + sin^2 theta -2 tan theta sin theta )]^2`

               =`[(tan^2 theta +sin^2 theta + 2 tan theta sin theta - tan^2 theta -  sin^2 theta+ 2 tan theta sin theta )]^2`

              =`(4 tan theta sin theta )^2`

              =`16 tan^2 theta sin^2 theta`

              =`16 (sin ^2 theta )/(cos^2 theta ) sin^2 theta`

              =`16 ((1- cos^2 theta) sin ^2 theta)/ cos^2 theta`

               =` 16 [ tan^2 theta (1- cos^2 theta)]`

               =`16 (tan^2 theta - tan^2 theta cos^2 theta)`

               =`16 (tan^2 theta -(sin^2 theta)/(cos^2 theta) xx cos^2 theta )s`

              =`16 ( tan^2 theta - sin^2 theta )`

              =`16 (tan theta + sin theta ) ( tan theta - sin theta)`

              =`16 mn                 [(tan theta + sin^theta )( tan theta - sin theta ) =mn]`

               =`∴ (m^2 - n^2 )(m^2 - n^2 )^2 = 16 mn`

           

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 7
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×