English

What is the Value of (1 − Cos2 θ) Cosec2 θ? - Mathematics

Advertisements
Advertisements

Question

What is the value of (1 − cos2 θ) cosec2 θ? 

Answer in Brief

Solution

We have, 

(1-cos2θ)cosec2θ=sin2θ×cosec2θ

=sin2θ×(1sinθ)2 

= sin2θ×1sin2θ 

=1

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 2 | Page 55

RELATED QUESTIONS

Prove the following identities:

(i)cos44Acos2A=sin4Asin2A

(ii)cot4A1=cosec4A2cosec2A

(iii)sin6A+cos6A=13sin2Acos2A.


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

sinAtanA1-cosA=1+secA


cot2θ-1sin2θ=-1a


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


If sinθ=13 then find the value of 9tan2 θ + 9. 


Prove the following identity :

tan2A-sin2A=tan2A.sin2A


Prove the following identity : 

cosecAcosecA-1+cosecAcosecA+1=2sec2A


Prove the following identity : 

2(sin6θ+cos6θ)-3(sin4θ+cos4θ)+1=0


Prove that sinθtanθ1-cosθ=1+secθ.


Without using trigonometric table, prove that
cos226°+cos64°sin26°+tan36°cot54°=2


If sin θ + cos θ = 3, then prove that tan θ + cot θ = 1


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = ± a2+b2-c2


If tan θ = 940, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 +      ......[Fundamental trigonometric identity]

sec2θ = 1 + 2

sec2θ = 1 +  

sec θ =  


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


If sin θ + cos θ = 3, then show that tan θ + cot θ = 1


tan θ × 1-sin2θ is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.