Advertisements
Advertisements
Question
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Solution
Given `cos theta + cos^2 theta = 1`
We have to prove sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
From the given equation, we have
`cos theta + cos^2 theta = 1`
`=> cos theta = 1 - cos^2 theta`
`=> ccos theta = sin^2 theta`
`=> sin^2 theta = cos theta`
Therefore, we have
sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2
`= (sin^12 theta + 3 sin^10 theta + 3 sin^8 theta + sin^6 theta) + (2 sin^4 theta + 2 sin^2 theta) - 2`
`= {(sin^4 theta)^3 + 3(sin^4 theta)^2 sin^2 theta + 3 sin^4 theta(sin^2 theta)^2 + (sin^2 theta)^3} + 2(sin^4 theta + sin^2 theta) - 2`
`= (sin^4 theta + sin^2 theta)^3 + 2 (sin^4 theta + sin^2 theta) - 2`
`= (cos^2 theta + cos theta)^3 + 2 (cos^2 theta + cos theta) - 2`
= (1)^3 + 2(1) - 2
= 1
hence proved
APPEARS IN
RELATED QUESTIONS
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Write the value of cosec2 (90° − θ) − tan2 θ.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
The value of sin2 29° + sin2 61° is
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.