English

If Cos θ + Cos2 θ = 1, Prove that Sin12 θ + 3 Sin10 θ + 3 Sin8 θ + Sin6 θ + 2 Sin4 θ + 2 Sin2 θ − 2 = 1 - Mathematics

Advertisements
Advertisements

Question

If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1

Solution

Given `cos theta + cos^2 theta = 1`

We have to prove sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1

From the given equation, we have

`cos theta + cos^2 theta = 1`

`=> cos theta = 1 - cos^2 theta`

`=> ccos theta = sin^2 theta`

`=> sin^2 theta = cos theta`

Therefore, we have

sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2

`= (sin^12 theta + 3 sin^10 theta + 3 sin^8 theta + sin^6 theta) + (2 sin^4 theta + 2 sin^2 theta) - 2` 

`= {(sin^4 theta)^3 + 3(sin^4 theta)^2 sin^2 theta + 3 sin^4 theta(sin^2 theta)^2 + (sin^2 theta)^3} + 2(sin^4 theta + sin^2 theta) - 2`

`= (sin^4 theta  + sin^2 theta)^3 + 2 (sin^4 theta + sin^2 theta) - 2`

`= (cos^2 theta + cos theta)^3 + 2 (cos^2 theta + cos theta) - 2`

= (1)^3 + 2(1) - 2

= 1

hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 84 | Page 47

RELATED QUESTIONS

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


Write the value of cosec2 (90° − θ) − tan2 θ. 


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


The value of sin2 29° + sin2 61° is


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×