English

Eliminate θ, If X = 3 Cosec θ + 4 Cot θ Y = 4 Cosec θ – 3 Cot θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ

Sum

Solution

Given:
x = 3cosecθ + 4cotθ              .....(1)
y = 4cosecθ – 3cotθ              .....(2)

Multiplying (1) by 4 and (2) by 3, we get
4x = 12cosecθ + 16cotθ         .....(3) 
3y = 12cosecθ – 9cotθ           .....(4) 

Subtracting (4) from (3), we get
4x − 3y = 25cot θ

⇒ cot θ = \[\frac{4x - 3y}{25}\]

⇒ cot2θ = \[\left( \frac{4x - 3y}{25} \right)^2\]             .....(5)

Multiplying (1) by 3 and (2) by 4, we get
3x = 9cosecθ + 12cotθ          .....(6) 
4y = 16cosecθ – 12cotθ        .....(7) 
Adding (6) and (7), we get
3x + 4y = 25cosecθ

⇒ cosecθ = \[\frac{3x + 4y}{25}\]

⇒ cosec2θ = \[\left(\frac{3x + 4y}{25}\right)^2\]          .....(8)

\[{cosec}^2 \theta - \cot^2 \theta = 1\]

\[{cosec}^2 \theta - \cot^2 \theta = \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]

\[ \Rightarrow \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]

\[ \Rightarrow \frac{1}{{25}^2}\left[ \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 \right] = 1\]

\[ \Rightarrow \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 = 625\]

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) B

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


(i)` (1-cos^2 theta )cosec^2theta = 1`


`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×