Advertisements
Advertisements
Question
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Solution
Given:
x = 3cosecθ + 4cotθ .....(1)
y = 4cosecθ – 3cotθ .....(2)
Multiplying (1) by 4 and (2) by 3, we get
4x = 12cosecθ + 16cotθ .....(3)
3y = 12cosecθ – 9cotθ .....(4)
Subtracting (4) from (3), we get
4x − 3y = 25cot θ
⇒ cot2θ = \[\left( \frac{4x - 3y}{25} \right)^2\] .....(5)
Multiplying (1) by 3 and (2) by 4, we get
3x = 9cosecθ + 12cotθ .....(6)
4y = 16cosecθ – 12cotθ .....(7)
Adding (6) and (7), we get
3x + 4y = 25cosecθ
⇒ cosecθ = \[\frac{3x + 4y}{25}\]
⇒ cosec2θ = \[\left(\frac{3x + 4y}{25}\right)^2\] .....(8)
\[{cosec}^2 \theta - \cot^2 \theta = \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]
\[ \Rightarrow \left( \frac{3x + 4y}{25} \right)^2 - \left( \frac{4x - 3y}{25} \right)^2 = 1\]
\[ \Rightarrow \frac{1}{{25}^2}\left[ \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 \right] = 1\]
\[ \Rightarrow \left( 3x + 4y \right)^2 - \left( 4x - 3y \right)^2 = 625\]
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
(i)` (1-cos^2 theta )cosec^2theta = 1`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1