English

Prove that sec2θ − cos2θ = tan2θ + sin2θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that sec2θ − cos2θ = tan2θ + sin2θ

Sum

Solution

L.H.S = sec2θ − cos2θ

= 1 + tan2θ – cos2θ     .......[∵ 1 + tan2θ = sec2θ]

= tan2θ + (1 – cos2θ)

= tan2θ + sin2θ       ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`

= R.H.S

∴ sec2θ − cos2θ = tan2θ + sin2θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.2 (B)

APPEARS IN

RELATED QUESTIONS

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


`(sec^2 theta-1) cot ^2 theta=1`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×