Advertisements
Advertisements
Question
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Solution
L.H.S = sec2θ − cos2θ
= 1 + tan2θ – cos2θ .......[∵ 1 + tan2θ = sec2θ]
= tan2θ + (1 – cos2θ)
= tan2θ + sin2θ ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= R.H.S
∴ sec2θ − cos2θ = tan2θ + sin2θ
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`(sec^2 theta-1) cot ^2 theta=1`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.