English

Tan θ Sec θ − 1 + Tan θ Sec θ + 1 is Equal to - Mathematics

Advertisements
Advertisements

Question

\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 

Options

  • 0

  • 1

  • -1

  • 2

MCQ

Solution

The given expression is `cot θ/(cotθ-cot 3θ)+tanθ/(tanθ-tan3θ)`

Simplifying the given expression, we have

`cotθ/(cotθ-cot3θ)+ tanθ/(tanθ-tan3θ)` 

= `(cosθ/sin)/(cosθ/sinθ-(cos3θ)/(sin3θ))+(sinθ/cosθ)/(sinθ/sinθ-(sin3θ)/(cos3θ))`

=` (cosθ/sinθ)/((cosθsin 3θ-cos3θsinθ)/(sinθ sin3θ))+ (sin θ/cos θ)/((sinθ cos3θ-sin3θ cosθ)/(cosθ cos3θ))`

=` (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)+(sinθ cos3θ)/(sinθ cos3θ-sin3θ sinθ)`

=`(cosθ sin3θ)/(cosθsinθ-cos3θsinθ)+(cos3θ sinθ)/(-1(cosθ sin3θ-cos3θ sinθ))`  

`= (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)-(cos3θsinθ)/(cosθsin3θ-cos3θsinθ)` 

`=(cosθsin3θ-cos3θsinθ)/(cosθsin3θ-cos3θsinθ)` 

=1

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.4 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.4 | Q 14 | Page 57

RELATED QUESTIONS

Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×