Advertisements
Advertisements
Question
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Options
0
1
-1
2
Solution
The given expression is `cot θ/(cotθ-cot 3θ)+tanθ/(tanθ-tan3θ)`
Simplifying the given expression, we have
`cotθ/(cotθ-cot3θ)+ tanθ/(tanθ-tan3θ)`
= `(cosθ/sin)/(cosθ/sinθ-(cos3θ)/(sin3θ))+(sinθ/cosθ)/(sinθ/sinθ-(sin3θ)/(cos3θ))`
=` (cosθ/sinθ)/((cosθsin 3θ-cos3θsinθ)/(sinθ sin3θ))+ (sin θ/cos θ)/((sinθ cos3θ-sin3θ cosθ)/(cosθ cos3θ))`
=` (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)+(sinθ cos3θ)/(sinθ cos3θ-sin3θ sinθ)`
=`(cosθ sin3θ)/(cosθsinθ-cos3θsinθ)+(cos3θ sinθ)/(-1(cosθ sin3θ-cos3θ sinθ))`
`= (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)-(cos3θsinθ)/(cosθsin3θ-cos3θsinθ)`
`=(cosθsin3θ-cos3θsinθ)/(cosθsin3θ-cos3θsinθ)`
=1
APPEARS IN
RELATED QUESTIONS
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ