Advertisements
Advertisements
प्रश्न
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
विकल्प
0
1
-1
2
उत्तर
The given expression is `cot θ/(cotθ-cot 3θ)+tanθ/(tanθ-tan3θ)`
Simplifying the given expression, we have
`cotθ/(cotθ-cot3θ)+ tanθ/(tanθ-tan3θ)`
= `(cosθ/sin)/(cosθ/sinθ-(cos3θ)/(sin3θ))+(sinθ/cosθ)/(sinθ/sinθ-(sin3θ)/(cos3θ))`
=` (cosθ/sinθ)/((cosθsin 3θ-cos3θsinθ)/(sinθ sin3θ))+ (sin θ/cos θ)/((sinθ cos3θ-sin3θ cosθ)/(cosθ cos3θ))`
=` (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)+(sinθ cos3θ)/(sinθ cos3θ-sin3θ sinθ)`
=`(cosθ sin3θ)/(cosθsinθ-cos3θsinθ)+(cos3θ sinθ)/(-1(cosθ sin3θ-cos3θ sinθ))`
`= (cosθ sin3θ)/(cosθ sin3θ-cos3θsinθ)-(cos3θsinθ)/(cosθsin3θ-cos3θsinθ)`
`=(cosθsin3θ-cos3θsinθ)/(cosθsin3θ-cos3θsinθ)`
=1
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Find the value of sin 30° + cos 60°.
Evaluate:
`(tan 65°)/(cot 25°)`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`