Advertisements
Advertisements
प्रश्न
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
उत्तर
`cosec^2 theta (1+ cos theta )(1- cos theta)`
= `cosec^2 theta (1- cos^2 theta)`
=`1/ sin^2 theta xx sin^2 theta `
= 1
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
` tan^2 theta - 1/( cos^2 theta )=-1`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
What is the value of (1 + cot2 θ) sin2 θ?
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
If cosθ = `5/13`, then find sinθ.
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
(1 – cos2 A) is equal to ______.