हिंदी

Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ

योग

उत्तर

L.H.S = sin θ (1 – tan θ) – cos θ (1 – cot θ)

= `sintheta (1 - (sintheta)/(costheta)) - costheta (1 - (costheta)/(sintheta))`

= `sintheta - (sin^2theta)/costheta - costheta + (cos^2theta)/sintheta`

= `sintheta + (cos^2theta)/sintheta - (sin^2theta)/costheta - costheta`

= `(sin^2theta + cos^2theta)/sintheta - ((sin^2theta + cos^2theta)/costheta)`

= `1/sintheta - 1/costheta`   ......[∵ sin2θ + cos2θ = 1]

= cosec θ – sec θ

= R.H.S

∴ sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.4

संबंधित प्रश्न

Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


\[\frac{x^2 - 1}{2x}\] is equal to 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×