Advertisements
Advertisements
प्रश्न
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
उत्तर
L.H.S = sin θ (1 – tan θ) – cos θ (1 – cot θ)
= `sintheta (1 - (sintheta)/(costheta)) - costheta (1 - (costheta)/(sintheta))`
= `sintheta - (sin^2theta)/costheta - costheta + (cos^2theta)/sintheta`
= `sintheta + (cos^2theta)/sintheta - (sin^2theta)/costheta - costheta`
= `(sin^2theta + cos^2theta)/sintheta - ((sin^2theta + cos^2theta)/costheta)`
= `1/sintheta - 1/costheta` ......[∵ sin2θ + cos2θ = 1]
= cosec θ – sec θ
= R.H.S
∴ sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
\[\frac{x^2 - 1}{2x}\] is equal to
If cos A + cos2 A = 1, then sin2 A + sin4 A =
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.