Advertisements
Advertisements
प्रश्न
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
उत्तर
LHS=`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta ))`
=`sqrt(((1+cos theta)^2)/((1-cos theta)(1+ cos theta))) + sqrt (((1-cos theta)^2)/((1+ cos theta) (1- cos theta))`
=`sqrt(((1+cos theta)^2)/((1-cos^2 theta))) + sqrt(((1-cos theta )^2)/((1-cos^2 theta))`
=` sqrt(((1+ cos theta)^2)/(sin^2 theta))+sqrt(((1-cos theta
)^2)/sin^2 theta)`
=`((1+cos theta))/(sin theta) + ((1-cos theta))/(sin theta)`
=`(1+ cos theta +1-cos theta)/sin theta`
=`2/sin theta`
= 2cos ecθ
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If sec θ + tan θ = x, then sec θ =
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
If x = a tan θ and y = b sec θ then
If cos θ = `24/25`, then sin θ = ?
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.