Advertisements
Advertisements
प्रश्न
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
उत्तर
L.H.S. = `((1 + tan^2A)cotA)/(cosec^2A)`
= `(sec^2A cotA)/(cosec^2A` ...(∵ sec2 A = 1 + tan2 A)
= `(1/(cos^2A) xx (cosA)/(sinA))/(1/(sin^2A))`
= `(1/(cosA sinA))/(1/(sin^2A))`
= `sinA/cosA`
= tan A = R.H.S.
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0