Advertisements
Advertisements
प्रश्न
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
उत्तर
LHS = `tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ)`
= `(sin^2θ/cos^2θ)/(sin^2θ/cos^2θ - 1) + (1/sin^2θ)/(1/(cos^2θ) - 1/sin^2θ)`
= `sin^2θ/(sin^2θ - cos^2θ) + (1/sin^2θ)/((sin^2θ - cos^2θ)/(cos^2θ sin^2θ))`
= `sin^2θ/(sin^2θ - cos^2θ) + cos^2θ/(sin^2θ - cos^2θ)`
= `(sin^2θ + cos^2θ)/(sin^2θ - cos^2θ) = 1/(sin^2θ - cos^2θ)` (∵`sin^2θ + cos^2θ = 1`)
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
If tanθ `= 3/4` then find the value of secθ.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.