Advertisements
Advertisements
प्रश्न
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
उत्तर
LHS = sin (90° - θ) cos (90° - θ)
LHS = cos θ. sin θ
RHS = tan θ. cos2θ
RHS = `sin θ/cos θ` x cos2θ
RHS = cos θ. sin θ
∴ LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.