Advertisements
Advertisements
Question
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Solution
LHS = sin (90° - θ) cos (90° - θ)
LHS = cos θ. sin θ
RHS = tan θ. cos2θ
RHS = `sin θ/cos θ` x cos2θ
RHS = cos θ. sin θ
∴ LHS = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If `sec theta = x ,"write the value of tan" theta`.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`