English

5sin2θ-5cot2θ, complete the activity given below. Activity: 5sin2θ-5cot2θ = □(1sin2θ-cot2θ) = 5(□-cot2θ) ......[1sin2θ=□] = 5(1) = □ - Geometry Mathematics 2

Advertisements
Advertisements

Question

`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`

Fill in the Blanks
Sum

Solution

`5/(sin^2theta) - 5cot^2theta`

= `5 (1/(sin^2theta) - cot^2theta)`

= `5("cosec"^2theta - cot^2theta)   ......[1/(sin^2theta) = "cosec"^2theta]`

= 5(1)

= 5.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.2 (A)

RELATED QUESTIONS

Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Choose the correct alternative:

tan (90 – θ) = ?


Choose the correct alternative:

cos 45° = ?


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×