English

Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below. Activity: L.H.S = □ = cos2θ×□ .....[1+tan2θ=□] = (cosθ×□)2 = 12 = 1 = R.H.S - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S

Fill in the Blanks
Sum

Solution

L.H.S. = `cos^2theta*(1 + tan^2theta)`

= `cos^2theta xx sec^2theta`    .....`[1 + tan^2theta = sec^2theta]`

= `(cos theta xx sectheta)^2`

= 12

= 1

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.2 (A)

RELATED QUESTIONS

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`


Simplify : 2 sin30 + 3 tan45.


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Choose the correct alternative:

Which is not correct formula?


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×