English

Choose the correct alternative: Which is not correct formula? - Geometry Mathematics 2

Advertisements
Advertisements

Question

Choose the correct alternative:

Which is not correct formula?

Options

  • 1 + tan2θ = sec2θ

  • 1 + sec2θ = tan2θ

  • cosec2θ − cot2θ = 1

  • sin2θ + cos2θ = 1

MCQ

Solution

1 + sec2θ = tan2θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (A)

APPEARS IN

RELATED QUESTIONS

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×