Advertisements
Advertisements
Question
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Solution
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80)`
`= (sin 35^@ . cos (90^@ - 35^@) + cos 35^@. sin (90^@ - 35^@))/(cosec^2(90^@ - 80^@) - tan^2 80^@`)
`= (sin 35^@ . sin 35^@ + cos 35^@ . cos 35^@) /(sec^2 80^@ - tan^2 80^@)`
`= (sin^2 35^@ + cos^2 35^@)/(sec^2 80^@ - tan^2 80^@) = 1/1 = 1`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
(1 – cos2 A) is equal to ______.