English

Prove the Following Trigonometric Identities. (1 - Cos Theta)/Sin Theta = Sin Theta/(1 + Cos Theta) - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`

Solution

We have to prove `(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`

We know that, `sin^2 theta + cos^2 theta = 1`

Multiplying both numerator and denominator by `(1 + cos theta)`, we have

`(1 - cos theta)/sin theta = ((1 - cos theta)(1 + cos theta))/(sin theta(1 + cos theta))`

`= (1 - cos^2 theta)/(sin theta(1 + cos theta))`

` = (sin^2 theta)/(sin theta(1 + cos theta))`

`= sin theta/(1 + cos theta)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 12 | Page 43

RELATED QUESTIONS

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×