Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Solution
We have to prove `(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and denominator by `(1 + cos theta)`, we have
`(1 - cos theta)/sin theta = ((1 - cos theta)(1 + cos theta))/(sin theta(1 + cos theta))`
`= (1 - cos^2 theta)/(sin theta(1 + cos theta))`
` = (sin^2 theta)/(sin theta(1 + cos theta))`
`= sin theta/(1 + cos theta)`
APPEARS IN
RELATED QUESTIONS
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.