Advertisements
Advertisements
Question
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Options
True
False
Solution
This statement is True.
Explanation:
`sqrt((1 - cos^2 theta) sec^2 theta)`
= `sqrt(sin^2 theta * sec^2 theta)` ...[∵ sin2θ + cos2θ = 1]
= `sqrt(sin^2 theta * 1/(cos^2 theta)` ...`[∵ sec theta = 1/costheta, tan theta = sin theta/cos theta]`
= `sqrt(tan^2 theta)`
= tan θ
APPEARS IN
RELATED QUESTIONS
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If sec θ + tan θ = x, then sec θ =
9 sec2 A − 9 tan2 A is equal to
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Choose the correct alternative:
cos 45° = ?
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.