English

(1-cos2θ)sec2θ=tanθ - Mathematics

Advertisements
Advertisements

Question

`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

`sqrt((1 - cos^2 theta) sec^2 theta)`

= `sqrt(sin^2 theta * sec^2 theta)`   ...[∵ sin2θ + cos2θ = 1]

= `sqrt(sin^2 theta * 1/(cos^2 theta)`  ...`[∵ sec theta = 1/costheta, tan theta = sin theta/cos theta]`

= `sqrt(tan^2 theta)`

= tan θ  

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.2 [Page 93]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.2 | Q 4 | Page 93

RELATED QUESTIONS

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


If sec θ + tan θ = x, then sec θ =


9 sec2 A − 9 tan2 A is equal to


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Choose the correct alternative:

cos 45° = ?


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×