Advertisements
Advertisements
Question
Prove the following identity :
tanA+cotA=secAcosecA
Solution
tanA+cotA=secAcosecA
Consider LHS = tanA + cotA
tanA + cotA = `sinA/cosA + cosA/sinA = (sin^2A + cos^2A)/(sinA.cosA)`
⇒ `tanA + cotA = 1/(sinA.cosA) = 1/sinA 1/cosA`
⇒ tanA + cotA = cosecA.secA = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ