Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Solution
We need to prove `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Now using cot theta = `1/tan theta` in the LHS we get
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = tan theta/(1 - 1/tan theta) + (1/tan theta)/(1 - tan theta)`
`= tan theta/(((tan theta - 1)/tan theta)) + 1/(tan theta(1 - tan theta))`
`= (tan theta)/(tan theta - 1)(tan theta) + 1/(tan theta(1 - tan theta)`
`= tan^2 theta/(tan theta - 1) - 1/(tan theta(tan theta - 1))`
`= (tan^3 theta - 1)/(tan theta(tan theta - 1))`
Further using the identity `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get
`(tan^3 theta - 1)/(tan(tan theta - 1)) = ((tan theta - 1)(tan^2 theta + tan theta + 1))/(tan theta (tan theta - 1))`
`= (tan^2 theta + tan theta + 1)/(tan theta)`
`= tan^2 theta/tan theta + tan theta/tan theta + 1/tan theta`
`= tan theta + 1 + cot theta`
Hence `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
From the figure find the value of sinθ.
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.