English

Prove the Following Trigonometric Identities. `Tan Theta/(1 - Cot Theta) + Cot Theta/(1 - Tan Theta) = 1 + Tan Theta + Cot Theta` - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`

Solution

We need to prove `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`

Now using cot theta = `1/tan theta` in the LHS we get

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = tan theta/(1 - 1/tan theta) + (1/tan theta)/(1 - tan theta)`

`= tan theta/(((tan theta - 1)/tan theta)) + 1/(tan theta(1 - tan theta))`

`= (tan theta)/(tan theta  - 1)(tan theta) + 1/(tan theta(1 - tan theta)`

`= tan^2 theta/(tan theta - 1) - 1/(tan theta(tan theta - 1))`

`= (tan^3 theta - 1)/(tan theta(tan theta - 1))`

Further using the identity `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get

`(tan^3 theta - 1)/(tan(tan theta - 1)) = ((tan theta - 1)(tan^2 theta + tan theta + 1))/(tan theta (tan theta - 1))`

`= (tan^2 theta + tan theta + 1)/(tan theta)`

`= tan^2 theta/tan theta + tan theta/tan theta + 1/tan theta`

`= tan theta + 1 + cot theta`

Hence `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 30 | Page 44

RELATED QUESTIONS

Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


From the figure find the value of sinθ.


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×