Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
उत्तर
We need to prove `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Now using cot theta = `1/tan theta` in the LHS we get
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = tan theta/(1 - 1/tan theta) + (1/tan theta)/(1 - tan theta)`
`= tan theta/(((tan theta - 1)/tan theta)) + 1/(tan theta(1 - tan theta))`
`= (tan theta)/(tan theta - 1)(tan theta) + 1/(tan theta(1 - tan theta)`
`= tan^2 theta/(tan theta - 1) - 1/(tan theta(tan theta - 1))`
`= (tan^3 theta - 1)/(tan theta(tan theta - 1))`
Further using the identity `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get
`(tan^3 theta - 1)/(tan(tan theta - 1)) = ((tan theta - 1)(tan^2 theta + tan theta + 1))/(tan theta (tan theta - 1))`
`= (tan^2 theta + tan theta + 1)/(tan theta)`
`= tan^2 theta/tan theta + tan theta/tan theta + 1/tan theta`
`= tan theta + 1 + cot theta`
Hence `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ