मराठी

Prove the Following Trigonometric Identities. `Tan Theta/(1 - Cot Theta) + Cot Theta/(1 - Tan Theta) = 1 + Tan Theta + Cot Theta` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`

उत्तर

We need to prove `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`

Now using cot theta = `1/tan theta` in the LHS we get

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = tan theta/(1 - 1/tan theta) + (1/tan theta)/(1 - tan theta)`

`= tan theta/(((tan theta - 1)/tan theta)) + 1/(tan theta(1 - tan theta))`

`= (tan theta)/(tan theta  - 1)(tan theta) + 1/(tan theta(1 - tan theta)`

`= tan^2 theta/(tan theta - 1) - 1/(tan theta(tan theta - 1))`

`= (tan^3 theta - 1)/(tan theta(tan theta - 1))`

Further using the identity `a^3 - b^3 = (a - b)(a^2 + ab + b^2)`, we get

`(tan^3 theta - 1)/(tan(tan theta - 1)) = ((tan theta - 1)(tan^2 theta + tan theta + 1))/(tan theta (tan theta - 1))`

`= (tan^2 theta + tan theta + 1)/(tan theta)`

`= tan^2 theta/tan theta + tan theta/tan theta + 1/tan theta`

`= tan theta + 1 + cot theta`

Hence `tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 30 | पृष्ठ ४४

संबंधित प्रश्‍न

9 sec2 A − 9 tan2 A = ______.


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×