Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
उत्तर
We need to prove `sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Here, rationaliaing the L.H.S, we get
`sqrt((1 - cos A)/(1 + cos A)) = sqrt((1 - cos A)/(1 +cos A)) xx sqrt((1 - cos A)/(1 - cos A))`
`= sqrt((1 - cos A)^2/(1 - cos^2 A))`
Further using the property, `sin^2 theta + cos^2 theta = 1` we get
So,
`sqrt((1 - cos A)^2/(1 - cos^2 A)) = sqrt((1 - cos A)^2/sin^2 A`
`= (1 - cos A)/sin A`
`= 1/sin A - cos A/sin A`
= cosec A - cot A
Hence proved.
APPEARS IN
संबंधित प्रश्न
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`sin^2 theta + 1/((1+tan^2 theta))=1`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
tan θ cosec2 θ – tan θ is equal to
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Choose the correct alternative:
cot θ . tan θ = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1