Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
उत्तर
LHS = `sqrt((1+sinA)/(1-sinA))`
`=sqrt((1+sinA)/(1-sinA)xx(1+sinA)/(1+sinA)`
`=sqrt((1+sinA)^2/(1-sin^2A))=sqrt((1+sinA)^2/cos^2A)`
`=(1+sinA)/cosA`
= sec A + tan A = RHS
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
`(sec^2 theta-1) cot ^2 theta=1`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
If `secθ = 25/7 ` then find tanθ.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.