Advertisements
Advertisements
प्रश्न
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
उत्तर
LHS = `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A))`
= `1/(1 + sinA) + 1/(1 - sinA)`
= `(1 - sinA + 1 + sinA)/((1 + sinA)(1 - sinA))`
= `2/(1 - sin^2A)`
= `2/cos^2A`
= `2sec^2A = 2cosec^2(90^circ - A)`
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Choose the correct alternative:
Which is not correct formula?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If cosA + cos2A = 1, then sin2A + sin4A = 1.